
PARALLEL MULTIGRID SMOOTHING: POLYNOMIAL VERSUS
GAUSS-SEIDEL

MARK ADAMS1,2 , MARIAN BREZINA3∗∗, JONATHAN HU1,2 , AND RAY TUMINARO1,2

Abstract. Gauss-Seidel method is often the smoother of choice within multigrid applications.
In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult
with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative
smoothers. We discuss the computational advantages of polynomial smoothers within parallel multi-
grid algorithms for positive definite symmetric systems. Two particular polynomials are considered:
Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over tra-
ditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson’s equation,
thin-body elasticity, and eddy current approximations to Maxwell’s equations. While parallelizing
the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and
maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence
rates without sacrificing flop rates. We show that, although parallel computers are the main motiva-
tion, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial
machines.

Key words. multigrid, Gauss-Seidel, polynomial iteration, smoothers, parallel computing.

AMS subject classifications. 76D05, 76D07, 65F10, 65F30

1. Introduction. Multigrid methods (e.g, [11], [20], [9]) are among the most effi-
cient iterative algorithms for solving the linear systems associated with elliptic partial
differential equations. The basic idea of multigrid is to capture errors by utilizing
multiple resolutions in the iterative scheme. High-energy (or oscillatory) components
are effectively reduced through a simple smoothing procedure, while the low-energy
(or smooth) components are tackled using an auxiliary lower-resolution version of the
problem (coarse grid). Since the error after smoothing should lack the high-energy
components, it is generally assumed that this error can be well-approximated using a
coarser resolution. Thus, the residual equation is transferred to the coarser level, and
its solution is used to correct the fine-level solution. The idea is applied recursively
on the next coarser level.

The Gauss-Seidel method has long been the smoother of choice within multigrid
schemes. It is effective on problems of practical interest, and on model problems its
superior smoothing characteristics cost little to implement in the serial computation
context [5]. While numerically attractive, constructing efficient parallel true Gauss-
Seidel algorithms is challenging as is shown in Sections 2 and 5. As an alternative,
Processor Block (or local) Gauss-Seidel is often used. Here, each processor performs
Gauss-Seidel as a subdomain solver for a block Jacobi method. While Processor Block
Gauss-Seidel is easy to parallelize, the overall multigrid convergence rate usually suf-
fers and can even lead to divergence if not suitably damped, as discussed in Section 2.

Given the parallel Gauss-Seidel difficulties, we consider smoothing schemes based

1Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy under Contract DE-ACO4-94AL85000.

2Sandia National Laboratories, PO Box 969, MS 9217, Livermore, CA 94551
(mfadams@ca.sandia.gov, jhu@sandia.gov, rstumin@sandia.gov)

3University of Colorado at Boulder, Dept. of Applied Math., Campus Box 526, Boulder, CO
80309 (brezina@newton.colorado.edu).
∗∗This work was sponsored by the National Institute of Health under grant number 1–R01–

EY12291–01, the National Science Foundation under grant number DMS–0084438, and the De-
partment of Energy under grant numbers DE-FG03-94ER25217 and DE-FC02-01ER25479.

1

2 Adams, Brezina, Hu, Tuminaro

on a polynomial iteration of the form:

x(m+1) = x(m) +
∑

0≤j≤n

αjA
j(b−Ax(m))(1.1)

to solve the positive definite symmetric system

Ax = b

with initial guess x(0). The αj are the polynomial coefficients and are precomputed
based on some knowledge of the spectrum of A. To simplify the description, it is
always assumed in this paper that the matrix A has been scaled so that all diagonal
entries are one. However, symmetric scaling is easily incorporated into (1.1) and is
used within our multigrid codes. The case n = 0 corresponds to the well known
damped-Jacobi method. Using polynomial smoothers with n > 0 as a solver has
been suggested in [25]. Polynomial smoothers within multigrid methods have also
been known for quite some time. Multi-stage Runge-Kutta methods [17, 16, 26], for
example, enjoy significant success within the computational fluid dynamics commu-
nity. These methods arise by introducing an artificial time-derivative to the equa-
tion obtained by discretization of hyperbolic or almost hyperbolic partial differential
equations. For symmetric problems, Chebyshev polynomials have also been known
for quite some time. They are discussed in works as early as [5] and [19]. How-
ever, these papers recommend Gauss-Seidel methods over polynomial methods. In
fact, our central thrust is to dispell a perception that polynomial smoothers are com-
putationally inferior to Gauss-Seidel. This previous perception was supported by
comparing convergence rates and floating point operations on simple structured mesh
problems. However, the comparisons between Gauss-Seidel and polynomial methods
are completely different when unstructured meshes are considered (where multi-color
Gauss-Seidel is problematic) on modern CPUs (where multi-color Gauss-Seidel flop
rates can be low) within a parallel simulation (where high Gauss-Seidel efficiency may
be harder to obtain).

We focus on two particular polynomials as a competitive replacements for a Gauss-
Seidel iteration within an unstructured parallel multigrid algorithm. In Section 3, we
describe two specific polynomials and motivate why they may be appropriate within a
multigrid solver. Section 4 analyses the performance of polynomial and Gauss-Seidel
methods. Finally, Section 5 compares the polynomial smoothers with both Parallel
Block Multi-colored Gauss-Seidel and processor-based Gauss-Seidel on three differ-
ent computational problems coming from Poisson’s equation, Maxwell’s equations,
and elasticity. While the primary focus is on parallel performance, surprisingly, the
polynomial methods are usually superior with Gauss-Seidel in serial computations as
well.

2. Parallel Gauss-Seidel Smoothing. The Gauss-Seidel iteration is widely
used as a multigrid smoother because it is effective on a variety of common model
problems. The Gauss-Seidel method can be succinctly described by

x(m+1) = x(m) + L−1(b−Ax(m))

where L is the lower triangular portion of the matrix A. The Gauss-Seidel iteration
proceeds by updating one unknown at a time. The kth unknown is modified so that
the kth equation is satisfied exactly using the most up-to-date approximation for the
other unknowns. The numerical convergence of the Gauss-Seidel method depends

Polynomial Smoothing 3

on the order in which the unknowns are updated. In particular, red-black ordered
Gauss-Seidel can provide for improved convergence rates (see Table 4.1 for convergence
properties of several common smoothers). It should be further noted that the damped
version of the Gauss-Seidel method is referred to as successive over relaxation (SOR).
In this paper, we consider only Gauss-Seidel since choosing an optimal SOR damping
parameter can be difficult for many problems of practical interest and is not generally
used in multigrid smoothers.

To employ the method within a conjugate-gradient preconditioner, we use sym-
metric Gauss-Seidel to maintain symmetry. Symmetric Gauss-Seidel processes the
equations in the reverse order of the previous Gauss-Seidel application. It should
be noted that there is no convergence benefit to a symmetric red-black Gauss-Seidel
solver over just a red-black Gauss-Seidel solver on a 2-cyclic matrix [12]. Our sit-
uation, however, is significantly different in that we use Gauss-Seidel as a smoother
within a multigrid preconditioner. This “symmetric” Gauss-Seidel smoother actu-
ally uses a single forward Gauss-Seidel sweep within the pre-smoother and a single
backward Gauss-Seidel sweep within the post-smoother. Thus, unlike a symmetric
Gauss-Seidel solver, a coarse grid correction occurs between the last forward sweep
color and the first backward sweep color. Further, our parallel Gauss-Seidel smoother
corresponds to a block coloring where lexicographical Gauss-Seidel is employed within
the blocks. Finally, symmetric Gauss-Seidel smoothing follows standard practice
of maintaining preconditioner symmetry for a symmetric problem thereby allowing
conjugate-gradient to be applied.

Though Gauss-Seidel smoothers typically yield good multigrid convergence prop-
erties, they lose their luster on unstructured grids and modern parallel computers.
Specifically, parallelization can be obtained by identifying groups of unknowns that
are independent from each other. Unknowns within a group (or color) can then
be updated simultaneously. Unfortunately, the elegant simplicity of structured grid
multi-color Gauss-Seidel is lost on 3D unstructured finite element applications as the
number of required colors increases dramatically. Additionally, multi-color order-
ing possesses pathological cache behavior as the solution vector is almost completely
swept through for each color. To avoid parallelization difficulties, a processor-localized
Gauss-Seidel is often employed instead of a true Gauss-Seidel method. In this case,
however, multigrid convergence rates usually suffer. The rest of this section discusses
the parallel Gauss-Seidel methods that are used in this study: a recent Parallel Block
Multi-color Gauss-Seidel algorithm (§2.1) and Processor Block Gauss-Seidel (§2.2).

2.1. Parallel Block Multi-color Gauss-Seidel. We are aware of only one
efficient parallel true Gauss-Seidel algorithm for unstructured problems, developed by
Adams [1]. This algorithm takes advantage of the domain decomposition provided
by the distribution of the stiffness matrix that is common in parallel computing.
These domains are generally chosen to reduce communication required by common
operations such as residual calculation. If processor subdomains are relatively large,
they will contain many interior nodes (i.e., nodes that can be processed without
communication) relative to the number of boundary nodes (i.e., nodes requiring off
processor updates in Gauss-Seidel). The general idea is to order nodes such that
interior nodes are processed while waiting for communication necessary to process
boundary nodes. This algorithm first colors the processors and uses an ordering of
the colors to provide a processor inequality operator (this ordering is reversed to
symmetrize the algorithm). Each processor partitions its nodes into interior and
boundary nodes. Boundary nodes are further partitioned into three sets:

4 Adams, Brezina, Hu, Tuminaro

• Bot: requires only communication with higher processors,
• Top: requires only communication with lower processors,
• Mid: all remaining boundary nodes.

Interior nodes are partitioned into two sets: Int1 and Int2 so as to satisfy

|Int1|+ |Top| ≈ |Int2|+ |Bot|(2.1)

where |·| measures the cost to apply Gauss-Seidel to the equations in the set. This
cost is approximated by the number of non-zeros in the equations. Int1 and Int2 are
each partitioned into two additional sets (Int1a, Int1b, Int2a and Int2b) to allow for
overlapping computation with the two primary communication steps in this algorithm.

Figure 2.1 illustrates the partitions of a 2D, four processor problem where the pro-
cessor colors are represented with integers (i.e., 1,2,3,4). Once nodes are partitioned,

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

Top

Int

Int
1

2

Bot

Mid nodes

nodes

nodes

nodes

nodes

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����
�����
�����
�����

�����
�����
�����
�����

3 4

21

Fig. 2.1. Sample partitioning for 2D mesh with four processors

the idea of the algorithm is to process first Top nodes, then Mid nodes, and then Bot
nodes. While communication that is needed for these boundary nodes occurs, inte-
rior nodes are processed. Figure 2.2 shows a schematic time line for this algorithm
corresponding to the model problem in Figure 2.1. The primary communication steps

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

���������������
���������������
���������������

���������������
���������������
���������������

�������������
�������������
�������������

�������������
�������������
�������������	�	�	�	�	
	�	�	�	�	
	�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�
���������
���������
���������

���������
���������
���������

����
����
����

���������
���������
������������������
���������
���������

���������
���������
���������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

���������������
���������������
���������������

���������������
���������������
���������������

�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������

�������
�������
�������

�������
�������
�������

���������
���������
���������

���������
���������
���������

�����������
�����������
�����������

 � � � � �
 � � � � �
 � � � � �

!�!�!�!�!�!�!
!�!�!�!�!�!�!
!�!�!�!�!�!�!

"�"�"�"�"�"�"
"�"�"�"�"�"�"
"�"�"�"�"�"�"

#�#�#�#�#
#�#�#�#�#
#�#�#�#�#

$�$�$�$�$
$�$�$�$�$
$�$�$�$�$

%&%&%&%&%&%&%&%&%&%&%&%&%&%&%
%&%&%&%&%&%&%&%&%&%&%&%&%&%&%
%&%&%&%&%&%&%&%&%&%&%&%&%&%&%

'&'&'&'&'&'&'&'&'&'&'&'&'&'&'
'&'&'&'&'&'&'&'&'&'&'&'&'&'&'
'&'&'&'&'&'&'&'&'&'&'&'&'&'&'

(&(&(&(&(&(&(
(&(&(&(&(&(&(
(&(&(&(&(&(&(

)&)&)&)&)&)&)
)&)&)&)&)&)&)
)&)&)&)&)&)&)
&&*&*&*&*&*
&&*&*&*&*&*
&&*&*&*&*&*

+&+&+&+&+&+&+
+&+&+&+&+&+&+
+&+&+&+&+&+&+

,&,&,&,&,
,&,&,&,&,
,&,&,&,&,
,&,&,&,&,

-&-&-&-&-
-&-&-&-&-
-&-&-&-&-
-&-&-&-&-

Time
1

2

3

4

Top

Bot

Mid

Int

Int

nodes

nodes

nodes

nodes

nodes

1

2

Fig. 2.2. Time line of model 2D problem

are indicated with arrows. Equation (2.1) insures that all processors update the Mid
nodes at roughly the same time (i.e., after half the work has been completed). Note

Polynomial Smoothing 5

that this is a “soft” synchronization point. In order to use the multigrid method as
a preconditioner for a symmetric Krylov method, we need to ensure symmetry of the
smoother. To symmetrize the algorithm, the sets Int1 and Int2 are interchanged as
well as the sets Top and Bot, and the equations in each partition are processed in
reverse order, see [1] for more details.

2.2. Processor Block Gauss-Seidel. To avoid complexities associated with
parallel Gauss-Seidel method and the soft synchronization points required for any
true parallel Gauss-Seidel implementation, it is possible to combine Gauss-Seidel with
Jacobi’s method. This compromise approach is commonly used in practice, sometimes
with interprocessor damping to account for the overall Jacobi character of the method
(see for example [13]). Specifically, each processor performs a Gauss-Seidel iteration
with the exception that previous iteration values are used for all off-processor un-
knowns (unknowns computed on other processors). We write this Processor Block
Gauss-Seidel iteration as

x(m+1) = x(m) + block diag(L)−1(b−Ax(m))

where

block diag(L)i,j =
{

0 if i and j are on different processors
ai,j if i and j are on the same processor.

This can be viewed as an additive Schwarz domain decomposition method where the
subdomain solver is one iteration of Gauss-Seidel.

While Processor Block Gauss-Seidel method is perfectly parallel, multigrid con-
vergence is usually slower than with true Gauss-Seidel smoothing. In fact, multigrid
might converge acceptably with Gauss-Seidel smoothing but diverge dramatically with
Processor Block Gauss-Seidel. One transparent example of this phenomenon occurs
when a single unknown is assigned to each processor. In this case, Processor Block
Gauss-Seidel is equivalent to undamped Jacobi which is unsuitable as a multigrid
smoother. While dramatic divergence might seem unlikely when only a few proces-
sors are employed, this is not necessarily true. We have observed non-convergence for
both Maxwell’s equations and elasticity applications with only four processors (where
multigrid with true Gauss-Seidel smoothing converges acceptably). This poor per-
formance mirrors the poor performance of Jacobi’s method. Specifically, Maxwell’s
equations and elasticity commonly yield symmetric positive definite operators that
are not M-matrices. Unlike M-matrices, the corresponding spectral radius of the di-
agonally scaled operator, ρ(D−1A), is significantly greater than two. This means that
undamped Jacobi iteration (without multigrid) is divergent, i.e. ρ(I − D−1A) > 1.
Given that Processor Block Gauss-Seidel is a combination of Jacobi and Gauss-Seidel
methods, its convergence problems are not really surprising.

Simple non-M matrix examples exhibiting divergence of the Processor Block
Gauss-Seidel method can be constructed. For example, consider a uniform grid on a
unit square with the following grid stencil:−.5 .99 −.5

−1. 2.03 −1.
−.5 .99 −.5

and periodic boundary conditions. The corresponding matrix is a discrete version of
the anisotropic problem

uxx + ε1uyy + ε2u = f, 0 < ε1, ε2 � 1.(2.2)

6 Adams, Brezina, Hu, Tuminaro

The above stencil yields a ‘strange’ discretization of (2.2). This discretization does
not correspond to any standard scheme and has been constructed artifically to demon-
strate a point. In particular, the resulting matrix is positive definite symmetric (but
not an M-matrix) and thus Gauss-Seidel method is guaranteed to converge. However,
Jacobi’s method is divergent and Processor Block Gauss-Seidel (without multigrid)
is also divergent when we associate one subdomain with each vertical grid line. In
fact, Processor Block Gauss-Seidel is even divergent with only three subdomains: one
corresponding to the middle grid line (i.e. x = .5), one corresponding to all points
left of the middle grid line and one corresponding to all points right of the middle
grid line. For strongly anisotropic problems such as these, line relaxation should be
employed within multigrid algorithms. When each vertical line corresponds to a sub-
domain, vertical line Processor Block Gauss-Seidel is identical to vertical line block
Jacobi which is unsuitable as a smoother (though it is not divergent). It is possible
to analyze this system with Fourier analysis. We forego this analysis here as it is
somewhat tedious and provides no additional insight.

Finally, it should be noted that it is possible to damp Processor Block Gauss-
Seidel method to obtain convergence. However, it is not clear how best to do this.
Ultimately, the optimal choice depends on processor and partitioning information.
This implies that damping will depend on the number of processors and so convergence
rates will also depend on the number of processors.

3. Polynomial Smoothers. Motivated by the parallel Gauss-Seidel difficulties
discussed in §2.1 and §2.2, we investigate polynomial smoothers as an alternative.
Consider the iterative procedure

x(m+1) = x(m) + p(A)(b−Ax(m))

to solve the positive definite symmetric problem1

Ax = b

with initial guess x(0), exact solution x∗, and with

p(A) =
∑

0≤j≤n

αjA
j .

The error propagation of the above method is defined by

e(m+1) = q(A)e(m)

where

q(A) = I − p(A)A, e(m) = x(m) − x∗.

To use the above iteration as a multigrid smoother, the error reduction properties of
the polynomial q(A) must be complementary to those of the coarse grid correction.
For elliptic problems, this typically means damping high frequency errors.

1To simplify the presentation, it is assumed that A is scaled so that all diagonal entries are one.
It is quite easy to incorporate symmetric diagonal scaling within a polynomial smoother.

Polynomial Smoothing 7

3.1. Chebyshev Polynomials. To motivate the use of smoothing based on
Chebyshev polynomials, consider an idealized coarse grid correction. Let the eigen-
value/eigenvector pairs of A be given by

(λ1, x1), (λ2, x2), ... , (λn, xn)

where

λ1 ≤ λ2 ≤ ... ≤ λn.

Choose a λ∗ to split the eigenvalues into two groups: low energy (λk < λ∗) and
high energy (λk ≥ λ∗). Assume that the multigrid coarse grid correction, Cmg(A),
completely annihilates error associated with small eigenvalues and does not affect
error associated with large eigenvalues:

Cmg(A)xk =
{

0 if λk < λ∗

xk if λk ≥ λ∗ .

The ideal smoother is then given by a Chebyshev polynomial q(z) that minimizes over
the range λ∗ ≤ z ≤ λn subject to the constraint that q(0) = 1. A jth degree Chebyshev
polynomial has the property that it has the smallest maximum amplitude over an
interval of all jth degree polynomials. Computing the coefficients of a Chebyshev
polynomial involves simple recurrences using the two eigenvalues defining the interval:
λ∗ and λn. The resulting smoother closely resembles the Chebyshev semi-iterative
method to accelerate a Jacobi iteration. However, in this context the Chebyshev
method is used only to damp error over the high frequencies. It is easy to show that
the associated kth degree polynomial, q(x), damps high frequency error by at least
µk (i.e., the maximum polynomial amplitude over the high frequency interval is µk)
where

µ0 = 1,

µ1 = λn−λ∗

λn+λ∗ ,

µk = µ1µk−1µk−2
2µk−2−µk−1µ1

k ≥ 2.

If the idealized coarse grid correction is a good approximation to the actual multigrid
coarse grid correction, µk should accurately approximate the actual multigrid conver-
gence. This is the basis of classical multigrid smoothing analysis [5]. We omit the
details and refer the interested reader to one of the many references on the Chebyshev
semi-iterative method and on Chebyshev polynomials, e.g., [10, 15, 25].

3.2. MLS: Multilevel Smoother Polynomial. The MLS smoother is based
on a combined effect of two different smoothing procedures which are constructed
to complement each other on the range of the coarse grid correction. Let us de-
note these procedures by oSl() and ôSl(). One iteration of their application to the
system Alx = bl is given by x ← oSl(Al, bl, x) and x ← ôSl(Al, bl, x), respectively.
Typically, oSl() is a pre-smoother while ôSl() is a post-smoother within a multigrid
iteration. When multigrid preconditioning is done for a conjugate gradient method,
x← ôSl(Al, bl, oSl(Al, bl, x)) is both the pre-smoother and post-smoother.

The procedures oSl() and ôSl() are constructed so that that their error propogation
operators, Sl and Ŝl respectively, have certain optimum properties. Specifically, Sl =
Sl(Al) is a polynomial of degree d in Al such that the expression %(S2

l A) is minimized

8 Adams, Brezina, Hu, Tuminaro

subject to the constraint Sl(Θ) = I where Θ denotes the zero matrix. A recurrence
relationship for Sl of degree d > 1 can be found in [23, 6]. A more convenient direct
construction in terms of a transformed Chebyshev polynomial can be found in [8]:

Sl = p1(Al) ≡
(

I − 1
r1

Al

)
. . .

(
I − 1

rd
Al

)
,(3.1)

where rk = %(Al)
2 (1 − cos 2kπ

2d+1), k = 1, . . . , d. Once Sl is defined, we can construct
AS

l = S2
l Al and define

Ŝl = p2(Al) ≡ I − ω

%̄(AS
l)

AS
l , ω ∈ (0, 2),

where %̄(X) denotes an upper bound on the spectral radius of a matrix X. For all
results in this paper ω is set to one. This completes the specification of the MLS
polynomial.

The precise details concerning this choice of polynomial is given in [6] where the
smoother was first developed in conjunction with the smoothed aggregation multigrid.
Here, we give a brief overview of the relevant material in [6]. In smoothed aggregation
multigrid, the polynomial Sl is also used as a prolongator smoother. Prolongator
smoothers take simple grid transfer operators and smooth them to produce improved
transfer operators

I l
l+1 = SlP

l
l+1(3.2)

where l (l + 1) denotes the fine (coarse) level. P l
l+1 are the simple transfer operators

referred to as tentative prolongators. They are obtained by a generalized aggregation
procedure [24] and have the property that (P l

l+1)
T P l

l+1 = I. The coarse level matrices
are then constructed in the variational multigrid fashion,

Al+1 = (I l
l+1)

T AlI
l
l+1.(3.3)

Using (3.1) as a prolongator smoother assures that the coarse level matrix based on
I l
l+1 has the smallest spectral radius of all matrices Ap(A)2 over all polynomials p(x)

of degree d such that p(0) = 1. In this sense, the smoothing effect produced by Sl

is theoretically optimal. We note that the theory presented in [21] requires such a
minimization in order to derive convergence rate estimates while the computational
experiments justify such a choice practically.

The MLS smoother has been described and analyzed in the two-level context with
d ≥ 1 in [23, 6]. The favorable two-level performance and analysis of [23, 21] have
served as a heuristic motivation for practically extending the application of MLS from
the two-level to the multilevel environment. We note that the MLS smoother was first
used in the multilevel context in the SAMISdat(AMG) code [7].

Given the definition of smoothing procedures oSl, ôSl, the definition of coarse level
matrices (3.3) and transfer operators (3.2), the two-level multigrid error propagation
operator can be written as

E = Ŝ(I − SP (PT SASP)−1PT SA)S.

Here we have dropped the level subscripts on all the operators. We note that matrices
S, Ŝ are both symmetric and A-symmetric and commute both with A and with each

Polynomial Smoothing 9

other. Hence we can easily estimate

‖E‖AS
≤ max

x∈Ker(P T AS)\{0}
‖ŜSx‖AS

≤ max
x∈Ker(P T AS)\{0}

min
{
‖Sx‖AS

‖x‖AS

,
‖Ŝx‖AS

‖x‖AS

}
.

Therefore, convergence properties will be bounded by the more effective of the
smoothers oS, ôS. In fact, a stronger result can be proved showing that the effect of
the smoother ôS increases with diminishing effect of smoother oS:

‖Ŝx‖2AS

‖x‖2
AS

≤ 1−
‖Sx‖2AS

‖x‖2
AS

ω(2− ω)
K

, ∀x ∈ Ker(PT AS) \ {0},

where K is a constant depending on the approximation property provided by the
tentative prolongator P , which is used in deriving the latter estimate. In that sense,
we can view the smoothers defined by S, Ŝ as not only complementing each other, but
at the same time being intimately related to the selection of coarse spaces. When-
ever smoother oS converges very slowly on the range of the coarse-grid correction,
convergence of ôS should improve, and vice versa. While derived for the smoothed
aggregation multigrid, the MLS smoother is not restricted to this multigrid scheme.
In § 5, results are given with the MLS smoother and geometric multigrid.

3.3. Eigenvalue Estimates. The main disadvantage of polynomial methods is
that they require extreme eigenvalues of the system. This is a well known problem
associated with the Chebyshev semi-iterative method. When used as a stand-alone
iterative solver, it requires the lowest eigenvalue which is often not available nor
practical to compute. However, this is not an issue for smoothers. The MLS smoother
does not need a lower eigenvalue estimate and the Chebyshev smoothers need an
estimate of the lower end of the high energy modes. In fact, it is possible to simply
divide the largest eigenvalue by a constant factor (e.g., 30). This fraction should
be related to how rapidly coarsening occurs within the multigrid method. We note,
however, that multigrid convergence does not seem very sensitive to this estimate.
These lower eigenvalue estimates are discussed further in §5.1.

While the largest eigenvalue estimate is still needed, it is much easier to obtain.
For example, when A is an M-matrix, the Gershgorin theorem can be applied to get
a fairly sharp upper bound on the largest eigenvalue. When the M-matrix is scaled
to have unit diagonal entries, the Gershgorin estimate is often just the number ‘2’ for
the largest eigenvalue. For non M-matrices, it is possible to estimate the eigenvalue
using a small number of Lanczos or conjugate gradient iterations. In many cases, this
estimate is required elsewhere in the code and so is readily available. In fact, most of
our numerical results are generated using smoothed aggregation algebraic multigrid.
Smoothed aggregation already requires the largest eigenvalue estimate, so there is no
additional parameter estimation cost associated with the polynomial smoothers. One
somewhat subtle issue is that polynomial methods are very sensitive to an under-
estimate of the largest eigenvalue but not too sensitive to an over-estimate. Thus,
we recommend scaling the estimate by a small factor because most computational
methods (e.g. Lanczos) give lower bounds to the largest eigenvalues.

4. Performance Analysis. For the most part, polynomial relaxation is not seri-
ously used within the multigrid community. This is largely due to the good smoothing

10 Adams, Brezina, Hu, Tuminaro

properties of Gauss-Seidel and the parameter estimation required by polynomial meth-
ods. Gauss-Seidel’s advantages are easily seen by examining multigrid convergence
rates for the standard 5-point approximation to the Laplacian on two-dimensional
structured grids. The convergence rates shown in Table 4.1 are well known and cor-
respond to using two-level standard geometric multigrid. The superiority of Gauss-

smoother iterations convergence rate
1 lex. Gauss-Seidel 28 .384
2 lex. Gauss-Seidels 16 .184
3 lex. Gauss-Seidels 13 .112

1 red-black Gauss-Seidel 20 .246
2 red-black Gauss-Seidels 11 .067
3 red-black Gauss-Seidels 10 .049

1 damped Jacobi 53 .596
2 steps of damped Jacobi 27 .36

2nd order Chebyshev 19 .216
3rd order Chebyshev 13 .120

Table 4.1
2-level multigrid on 255 × 255 structured grid Laplacian with Dirichlet boundary conditions.

Convergence determined when the initial residual is reduced by 1012. Convergence rate is the ratio
of the last two residuals. Random initial guess & zero right hand side.

Seidel is fairly evident if it is assumed that k Gauss-Seidel steps cost roughly the same
as the application of a kth degree polynomial smoother. In particular, multigrid us-
ing 1 step of red-black Gauss-Seidel requires only 20 iterations while using a damped
Jacobi smoother (equivalent to a 1 step Chebyshev polynomial) requires 53 iterations
(2.5 times larger). This strong Gauss-Seidel performance combined with the freedom
from parameter estimation have left polynomial methods somewhat ignored.

On closer examination of Table 4.1, it seems that the situation is not quite so
bleak for polynomial schemes. If we look at the 2-step methods, red-black Gauss-
Seidel smoothing requires 11 iterations while Chebyshev requires 19, a somewhat
smaller ratio. Further, 2 steps of lexicographical Gauss-Seidel requires 16 iterations
(only 3 less than Chebyshev). It could certainly be argued that comparisons with
lexicographical Gauss-Seidel are more representative than comparisons with red-black
Gauss-Seidel as it is not common practice to color Gauss-Seidel smoothers. This
is, in part, due to the potentially poor cache performance of multi-color orderings.
Of course, our focus is not to advocate the application of polynomial smoothers to
structured grid Poisson problems on serial computers. Gauss-Seidel works extremely
well in this situation. Our discussion is intended to show that even in the serial
structured environment the price for using polynomial smoothers is not as high as
commonly believed.

A comparison between polynomial and Gauss-Seidel methods must also consider
computational work. On close inspection, the cost is not identical for k-step Gauss-
Seidel and k-degree polynomial methods. Specifically, a polynomial smoother can
easily skip the first matrix-vector product when a zero initial guess is present. A zero
guess occurs when pre-smoothing on coarse grids within a multigrid V cycle and when
pre-smoothing on the finest grid when multigrid is used as a preconditioner2. This
means that a 2nd degree polynomial would only require one matrix-vector product

2This is fairly commonplace especially within algebraic multigrid codes.

Polynomial Smoothing 11

on each grid level. Gauss-Seidel method can also take advantage of a zero guess
by suppressing all calculations involving information that has not yet been updated.
This corresponds to savings of half a matrix-vector product. This means that 2 steps
of Gauss-Seidel require about one and a half matrix-vector products on each level.
However, Gauss-Seidel smoothers can take advantage of the zero initial guess only if
lower and upper triangular parts of the matrix can be accessed inexpensively. This
is possible when the lower triangle, upper triangle and diagonal of the matrix are
stored separately. Unfortunately, many commonly used sparse storage formats do not
support this and so in this case the Gauss-Seidel method can not take advantage of a
zero initial guess. When all of these factors are considered together, the gap between
Gauss-Seidel and polynomial methods is not nearly as great as on first inspection.

While minimizing run time is our primary focus, there are two significant software
advantages to polynomial smoothers when developing numerical libraries/packages.
First, smoothing properties on multiple processors are identical to the one processor
case. In contrast, Processor Block Gauss-Seidel smoothing rates typically deteriorate
with increasing number of processors, and Parallel Block Multi-color Gauss-Seidel
requires different orderings depending on the number of processors. Second, polyno-
mial smoothers only rely on matrix-vector products. These matrix-vector products
are usually optimized by application users as well as by any third party package which
might be used to produce an outer Krylov method. Thus, while Gauss-Seidel methods
require special matrix kernels and formats for optimal performance, efficient polyno-
mial methods have no such requirements and easily take advantage of often already
existing optimized matrix-vector products. Table 4.2 summarizes the advantages and

Gauss-Seidel polynomial

Convergence excellent smoothing good smoothing with higher order

Parameters none needed largest eigenvalue estimate

Parallel complex code for block coloring
& high efficiency. Sub-optimal
smoothing for local Gauss-Seidel.

trivial

Mflops high rates require special code,
block multi-color can have poor
cache utilization

trivial

Data
neutrality

requires special kernel for good
performance

trivial

Zero guess 1
2

matrix-vector product saved
with special code requiring partic-
ular matrix storage

1 matrix-vector product saved
trivially

Table 4.2
Summary of trade-offs between Gauss-Seidel and polynomial smoothers.

disadvantages of the smoothers that have been discussed.

5. Numerical studies. To study the behavior of the polynomial smoothers,
three application areas are considered. The first problem (§5.2) is the Poisson equation

∇2u = f

where u is a scalar valued function on the unit cube with Dirichlet boundary condi-
tions. The second problem (§5.3) is the linear elasticity

(λ + µ)∇(∇ · u) + µ∇2u = f

12 Adams, Brezina, Hu, Tuminaro

where λ and µ are the Lamé parameters and u is a vector valued function of dis-
placements. The third problem (§5.4) corresponds to an eddy current formulation of
Maxwell’s equations

∇×∇× u + σ(x, y, z)u = f

where σ(x, y, z) is the conductivity of the material and u is a vector valued function
corresponding to the electric field.

The smoothed aggregation multigrid method [22] is used for the Poisson and for
some of the elasticity problems. Since this multigrid method requires an estimate of
the spectral radius of the matrix, this estimate can be reused within the polynomial
smoothers without additional expense if the same scaling is used for the prolongation
smoother and the multigrid smoother (e.g., diagonal). The solver is conjugate gradient
preconditioned with one iteration of V-cycle multigrid. To ensure symmetry of the
preconditioner, either symmetric Gauss-Seidel is employed for pre and post smoothing
or the same polynomial is invoked for both pre and post smoothing. When an initial
guess is not present, the polynomial smoothers omit the first matrix-vector product.
It is not possible to efficiently omit work for the Gauss-Seidel method as the already
existing matrix formats do not separately store the upper and lower parts of the
matrix. All MLS results use the lowest degree MLS polynomial which is 4. All parallel
data was obtained using the ASCI Red machine at Sandia National Laboratories.

For Maxwell’s equations a different algebraic multigrid method is used [18, 4].
This scheme uses a 2-step distributed relaxation smoother. Step one consists of ap-
plying either symmetric Gauss-Seidel or polynomial smoothing. Step two corrects
this solution by projecting a residual equation into the kernel or null space of the curl
operator and then applying either polynomial or symmetric Gauss-Seidel smoothing
to the projected operator. The details of this smoother can be found in [14]. For this
paper, it is sufficient to understand that this distributed relaxation ultimately depends
on either Gauss-Seidel or polynomial methods. Conjugate gradient is again employed
as an outer iteration. To maintain symmetry, the distributed pre-smoothing operates
on the original operator followed by the projected system while the post-smoothing
operates first on the projected system. The second system within the smoother al-
ways starts with a zero initial guess while the first system has a zero initial guess only
during the pre-smoothing.

5.1. Eigenvalue estimate sensitivity. We investigate the sensitivity of the
polynomial methods to eigenvalue estimates on a truncated cone linear elasticity prob-
lem with 21,600 degrees of freedom. Figure 5.1 shows the problem which is meshed
with first order mixed hexahedral elements and is fixed at the base and loaded at
the other end. In these experiments, we use 100 iterations of the conjugate gradi-
ent method to compute a relatively accurate estimate λest of the largest eigenvalue.
(In practice, we have found that 5 or 10 iterations to be adequate for most of the
problems that we have encountered.) We then compare the number of iterations to
converge to the solution using various perturbations of λest for the largest eigenvalue.
For Chebyshev polynomials a lower eigenvalue, λ∗, is also needed to delimit the low
and high frequencies. The λ∗ estimate is also perturbed in these experiments. The
data in Table 5.1 shows that convergence is not very sensitive to the λ∗ used for the
lower end of the high frequency spectrum. The data also illustrates that the Cheby-
shev smoothers are very sensitive to underestimating the highest eigenvalue. This is
expected because Chebyshev polynomials lose their effectiveness rapidly in the part
of the spectrum above the point at which they are optimal. For the remainder of this

Polynomial Smoothing 13

 S T R E S S 1
Min = -1.39E+01
Max = 1.40E+01

-9.87E+00
-5.88E+00
-1.90E+00
 2.08E+00
 6.07E+00
 1.01E+01

Current View
Min = -1.09E+01
X = 0.00E+00
Y = 7.87E+00
Z =-6.48E+01
Max = 1.40E+01
X = 0.00E+00
Y =-3.99E+00
Z = 6.80E+01

Time = 0.00E+00Time = 0.00E+00

Fig. 5.1. Deformed shape of cone problem.

λmax λ∗ Chebyshev
1.1λest λest/18.9 34
1.1λest λest/37.1 31
1.1λest λest/109.8 30
1.0λest λest/109.8 28
.9λest λest/109.8 73

Table 5.1
Sensitivity of fourth order Chebyshev smoother to eigenvalue estimates. Total iterations to

reduce initial residual by 6 orders of magnitude.

paper, we estimate the largest eigenvalue by using 10 steps of conjugate gradient and
then boosting it by a factor of 1.1 (i.e. λmax = 1.1λest), and take λ∗ = λmax/30.

5.2. Poisson equation. Table 5.2 gives the iteration counts and solve times
required to reduce the initial residual by 106 for Poisson’s equation on the unit cube
with Dirichlet boundary conditions. This data shows that the second order Chebyshev
smoother and the Processor Block Gauss-Seidel (indicated by B-SGS in Table 5.2)
give almost identical convergence rates and solve times. While the MLS convergence
is fine, the times are greater because the lowest degree MLS polynomial is 4 which is
over-kill for this problem (i.e. too much smoothing is done for this simple problem).

5.3. Linear elasticity. The next test problem is that of an automotive wheel
modeled with triangular shell elements (data courtesy of Charbel Farhat). The prob-
lem has 59,490 degrees of freedom (dof). A detail of the associated mesh is shown in
Figure 5.2. Table 5.3 shows the iteration counts and total times required to reduce
the residual by a factor of 106 for the shell problem (“SHELL”), and for two finite-
difference discretizations of an elasticity problem associated with atomic positions in
nanostructures (“HELIX”, data courtesy of Stefan Goedecker). The latter problem is
singular, with kernel dimension of 6 and many eigenvalues very close to zero. Perfor-

14 Adams, Brezina, Hu, Tuminaro

of elements procs smoother iterations time (seconds)
1293 16 1 B-SGS

2nd order Chebyshev
MLS

11
10
13

18.0
17.1
32.7

2213 121 1 B-SGS
2nd order Chebyshev
MLS

17
15
13

20.4
18.7
33.7

3853 1024 1 B-SGS
2nd order Chebyshev
MLS

19
15
14

19.5
17.5
29.3

Table 5.2
Iterations & run times to solve the Poisson equation. B-SGS indicates Processor Block Gauss-

Seidel.

Fig. 5.2. “Shell” problem mesh.

Problem dof smoother iterations time (seconds)
Small HELIX 52,665 SGS

MLS
21
18

28.1
28.7

Large HELIX 210,489 SGS
MLS

22
19

124.2
129.9

SHELL 59,490 SGS
MLS

18
19

18.4
20.2

Table 5.3
3D Elasticity problems in serial. SGS indicates symmetric Gauss-Seidel.

mance of the multigrid using one step of the MLS smoother and 2 steps of symmetric
Gauss-Seidel is compared on a single 1 GHz Pentium III processor. The data shows
that on a serial machine the multigrid iteration using Gauss-Seidel smoother beats
the one using MLS smoother (fourth degree polynomial) by a small margin in terms
of computation time.

The next elasticity problem is a series of thin concentric spheres enclosed in a cube
of “soft” material (with symmetric boundary conditions so that only one octant need
be modeled). The elements are first order mixed hexahedral elements. The sphere is
composed of seventeen alternating layers of hard and soft materials. Table 5.4 shows
a summary of the constitution of the two material types. The loading and boundary

Polynomial Smoothing 15

Material Elastic modulus Poisson ratio
soft 10−4 0.49
hard 1 0.3

Table 5.4
Concentric spheres model materials.

conditions are an imposed uniform displacement (down), on the top surface. Figure
5.3 shows the deformed shape of the 79,679 dof version of the problem. The mesh

-3.90E+00
-7.91E-01
 2.32E+00
 5.43E+00
 8.54E+00
 1.16E+01

-7.01E+00

 1.48E+01

 PRIN. STRESS 1

Current View
Min = -6.86E+00
X = 2.96E-01
Y = 0.00E+00
Z = 7.45E+00
Max = 1.48E+01
X = 4.11E-16
Y = 6.71E+00
Z = 2.99E+00

 Time = 2.02E+00

Fig. 5.3. Deformed shape of concentric spheres problem.

is parameterized and the number of processors is selected to keep about 40K dof per
processor. Each successive problem has one more layer of elements through each of
the seventeen shell layers and in the outer soft domain. A similar refinement is done in
the other two directions. This study uses ten versions of this problem ranging in size
from about 80K to about 76M dof. In this example, a geometric multigrid method is
used as a preconditioner for conjugate gradient [2] .

Figure 5.4 shows iteration counts plotted against number of processors for first and
fourth order Chebyshev polynomial smoothers, the MLS smoother, and one iteration
of Parallel Block Multi-color Gauss-Seidel (symmetrized by reversing the order of the
equations in the post smoothing step). The data shows that the iteration counts
are about constant for each method as the problem size is increased and that Gauss-
Seidel is more effective than a first order Chebyshev smoother in reducing the residual.
Figure 5.5, however, shows that the polynomial smoothers are faster, especially as the
degree of parallelism increases. Figure 5.6 shows the Megaflop rates per processor.
This data illustrates the main disadvantage of Gauss-Seidel, namely that the flop
rate per processor decreases as the number of processors increases. The flop rates for
the polynomial smoothers decrease only slightly as almost all the work is in highly
optimized matrix-vector product kernels.

5.4. Eddy current formulation of Maxwell’s equations. For Maxwell’s
equations we consider an application arising from modeling the Z-pinch machine at
Sandia [4]. In this case, σ varies from 10−3 to 103 and the problem includes both
Dirichlet and Neumann boundary conditions. A picture of the computational do-
main of interest is given in Figure 5.7. Table 5.5 gives iterations and run time using
both Processor Block SOR and polynomial methods within the distributed smoother.

16 Adams, Brezina, Hu, Tuminaro

10
1

10
2

10
3

0

20

40

60

80

100

120

140

160

180

Processors − ASCI Red

Ite
ra

tio
ns

Iterations (rtol=10−6), ~40K dof per processor

Chebyshev(1)
Chebyshev(4)
MLS
Gauss−Seidel

Fig. 5.4. Number of iterations using geometric multigrid with polynomial smoothers and Gauss-
Seidel smoothers on concentric spheres problem.

10
1

10
2

10
3

0

50

100

150

200

Processors − ASCI Red

S
ol

ve
 T

im
e

(s
ec

)

Solve Time (rtol=10−6), ~40K dof per processor

Chebyshev(1)
Chebyshev(4)
MLS
Gauss−Seidel

Fig. 5.5. Run time using geometric multigrid with polynomial smoothers and Gauss-Seidel
smoothers on concentric spheres problem.

Polynomial Smoothing 17

10
1

10
2

10
3

0

5

10

15

20

25

30

35

40

Processors − ASCI Red

M
flo

ps
/s

ec
 p

er
 p

ro
ce

ss
or

Mflop/sec/proc. (rtol=10−6), ~40K dof per processor

Chebyshev(1)
Chebyshev(4)
MLS
Gauss−Seidel
MatMult

Fig. 5.6. Megaflop rates using geometric multigrid with polynomial smoothers and Gauss-Seidel
smoothers on concentric spheres problem.

Fig. 5.7. Idealized Zpinch picture.

Without damping (not shown here for multiple processors), multigrid using Processor
Block Gauss-Seidel does not converge on four or more processors. While damping
improves robustness, it can degrade the overall smoother performance. This is seen in
Table 5.5 where a damping parameter is chosen experimentally based on the number
of processors3. In particular, the multigrid method degrades noticeably as the damped
version does not perform as well as the undamped version. By contrast, the polyno-
mial smoothers perform well even when many processors are employed. It should be

3The single processor run does not use any damping.

18 Adams, Brezina, Hu, Tuminaro

procs # of elements Dis. B-SSOR Dis. 4th order Chebyshev Dis. MLS
iter time iter time iter time

1 18,720 15 60.2 21 90.7 27 98.1
20 149,760 71 138.8 37 69.8 46 73.1
50 508,560 61 173.2 31 86.1 36 85.4
160 1,608,480 86 311.5 40 142.1 49 154.0
400 4,068,480 95 652.6 43 316.5 53 346.5

Table 5.5
Iteration counts and times (seconds) for Maxwell’s equations. ‘Dis.’ indicates 2-stage dis-

tributed relaxation using either Processor Block symmetric SOR (B-SSOR), Chebyshev or MLS in
both stages.

noted that the iteration growth using the polynomial smoothers is due to the some-
what poor approximation property of the grid transfers. A new algebraic multigrid
variant has been developed which partially addresses this problem [3]. Overall, the
Chebyshev smoother is more than twice as fast as the Processor Block SOR smoother
on the larger simulations.

6. Conclusions. We have shown that polynomial smoothing within a multigrid
method may be preferable to traditional Gauss-Seidel smoothing for parallel unstruc-
tured grid problems corresponding to positive semi-definite matrices. They are easy
to implement and integrate within existing codes, perform identically in serial and
in parallel, and require only a well-tuned matrix-vector product kernel. By contrast
Gauss-Seidel methods are problematic. Parallel Block Multi-color Gauss-Seidel can be
difficult to implement and will run at slower Megaflop rates than polynomial methods.
When many processors are used, Processor Block (or local) Gauss-Seidel methods of-
ten suffer severe convergence degradation (especially for non-M matrix applications).
Experiments have been shown from three different codes and from three different ap-
plication areas. The results illustrate that polynomial smoothers are very competitive
in serial and out-perform Gauss-Seidel smoothers in parallel.

REFERENCES

[1] M. F. Adams, A distributed memory unstructured Gauss-Seidel algorithm for multigrid
smoothers, in ACM/IEEE Proceedings of SC01: High Performance Networking and Com-
puting, 2001.

[2] M. F. Adams and J. Demmel, Parallel multigrid solver algorithms and implementations for
3D unstructured finite element problem, in ACM/IEEE Proceedings of SC99: High Per-
formance Networking and Co mputing, Portland, Oregon, November 1999.

[3] P. Bochev, C. Garasi, J. Hu, A. Robinson, and R. T. ro, An improved algebraic multigrid
method for solving maxwell’s equations, to appear in SIAM J. Sci. Comp., (2003).

[4] P. Bochev, J. Hu, A. Robinson, and R. Tuminaro, Towards robust 3D Z-pinch simulations:
discretization and fast solvers for magnetic diffusion in heterogeneous conductors, Elec.
Trans. Numer. Anal., 14 (2002).

[5] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31
(1977), pp. 333–390.

[6] M. Brezina, Robust Iterative Solvers on Unstructured Meshes, PhD thesis, University of Col-
orado at Denver, Denver, CO 80217-3364, 1997.

[7] , SAMISdat(AMG) version 0.98 - User’s Guide. 2002.
[8] M. Brezina, C. I. Heberton, J. Mandel, and P. Vaněk, An iterative method with

convergence rate chosen a priori, UCD/CCM Report 140, Center for Computa-
tional Mathematics, University of Colorado at Denver, February 1999. http://www-
math.cudenver.edu/ccmreports/rep140.ps.gz.

Polynomial Smoothing 19

[9] W. L. Briggs, V. E. Henson, and S. McCormick, A multigrid tutorial, Second Edition,
SIAM, Philadelphia, 2000.

[10] G. H. Golub and C. F. V. Loan, Matrix computations, Johns Hopkins University Press,
Baltimore, 1996.

[11] W. Hackbusch, Multigrid methods and applications, vol. 4 of Computational Mathematics,
Springer–Verlag, Berlin, 1985.

[12] W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations, Springer-Verlag, New
York, 1994.

[13] V. Henson and U. Yang, BoomerAMG: A parallel algebraic multigrid solver and precondi-
tioner, Tech. Report UCRL-JC-139098, Lawrence Livermore National Laboratory, 2000.
To appear in Applied Numerical Mathematics.

[14] R. Hiptmair, Multigrid method for Maxwell’s equations, SIAM J. Numer. Anal., 36 (1998),
pp. 204–225.

[15] E. Isaacson and H. B. Keller, Analysis of Numerical Methods, John Wiley & Sons, New
York, 1966.

[16] A. Jameson and T. J. Baker, Multigrid solution of the Euler equations for aircraft configu-
rations, AIAA Paper No. 84-0093, (1984).

[17] A. Jameson, W. Schmidt, and E. Turkel, Numerical solution of the Euler equations by
finite volume methods using Runge-Kutta time-stepping schemes, AIAA Paper No. 81-
1259, (1981).

[18] S. Reitzinger and J. Schöberl, An algebraic multigrid method for finite element discretiza-
tions with edge elements, Numer. Linear Algebra Appl., 9 (2002), pp. 223–238.

[19] K. Stüben and U. Trottenberg, Multigrid methods: Fundamental algorithms, model problem
analysis and applications, in Multigrid Methods, W. Hackbusch and U. Trottenberg, eds.,
vol. 960 of Lecture Notes in Mathematics, Berlin, 1982, Springer–Verlag, pp. 1–176.

[20] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, London,
2001.

[21] P. Vaněk, M. Brezina, and J. Mandel, Convergence of algebraic multigrid based on smoothed
aggregation, Numerische Mathematik, 88 (2001), pp. 559–579.

[22] P. Vaněk, J. Mandel, and M. Brezina, Algebraic multigrid based on smoothed aggregation
for second and fourth order problems, Computing, 56 (1996), pp. 179–196.

[23] P. Vaněk, M. Brezina, and R. Tezaur, Two-grid method for linear elasticity on unstructured
meshes, SIAM J. Sci. Comp., 21 (1999), pp. 900–923.

[24] P. Vaněk, J. Mandel, and M. Brezina, Algebraic multigrid by smoothed aggregation for
second and fourth order elliptic problems, Computing, 56 (1996), pp. 179–196.

[25] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Hills, NJ, 1962.
[26] P. Wesseling, An Introduction to Multigrid Methods, John Wiley & Sons, Chichester, 1992.

Reprinted by www.MGNet.org.

